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This paper deals with the optimal solution of the Petrovsky-elliptic system lu = j;
where I is of homogeneous order t and IE H'(Q). Of particular interest is Ihe
strength of finite element information (FEI) of degrce k. as well as the qualiIy of thc
finite element method (FEM) using this information. We show that the FEM is
quasi-optimal iff k ~ r + r - l. Suppose this inequality is violated; is the lack of
optimality in the FEM due to the information that it uses. or is it because the FEM
makes inefficient use of its information') We show that the latter is the case. The
FEI is always quasi-optimal information. That is, the splinc algorithm using FEI is
always a quasi-optimal algorithm. In addition. we show that the asymptotic penalty
for using the FEM when k is too small (rather than the spline algorithm which uses
the same finite element information as the FEI is unbounded. (!<JX5 Academic Press.

Inc

1. INTRODUCTION

This paper is a theoretical study of the optimal solution of systems of
linear partial differential equations which are elliptic in the sense of
Petrovsky [1, 12, 15]. A number of examples of such problems are
described in [15J; these include the Cauchy-Riemann equations for
Poisson's equation in the plane, as well as problems of fluid flow and
elasticity. (The concept of elliptic system is defined in Section 2.)

Since one of the most commonly used methods for solving such
problems is the finite element method (FEM), see [2-5, 11, 15J, we wish
to determine conditions under which the FEM is quasi-optimal (i.e.,
optimal to within a constant factor).

In order to make the notion of optimality more precise, we use the infor­
mation-centered approach of [13]. The main idea is that an algorithm for
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solving this problem can only usc information of finitc cardinality (sec Sec­
tion 3 for definitions of these terms). Hencc. there is inhcrent uncertainty
when attempting to solve these infinite-dimensional problems using infor­
mation of finite cardinality. From this. we are able to determine tight
bounds on the nth minimal error (i.e.. the minimal error among all
algorithms using information of cardinality at most n,l.

In Section 4. we show that the FEM is quasi-optimal if and only if

k;~r+1 I. ( 1.1 )

where k is the degree of the finite clement subspace. I is the order of the
elliptic system. and the problem elements I are (a priori) uniformly boun­
ded in the H'(Q i-norm (so that,. measures the regularity of the class of
problem clements). Thus. the degree of the FEM must increase with the
regularity of the class of problem clements. if the FEM is to remain quasi­
optimal.

Suppose the inequality (1.1) is violated. Is the non-optimality of thc
FEM inherent in the finite clement information (FEI) it uses. or is it due to
the fact that it uses the FEI inefficiently') We show that the latter is thc
case; regardless of whether (1.1) holds. FEI is quasi-optimal information.
That is. the "spline algorithm" using the FE! is quasi-optimal.

In Section 5, we discuss the I:-complexity of the problem, i.e., the com­
plexity of finding approximations which differ by at most I: from the true
solution. The FEM is a quasi-optimal-complexity algorithm iff (1.1 ) holds;
if (1.1) is violated. the asymptotic pcnalty for using the FEM is unbounded.
However. the spline algorithm using the FEI (which. again. is the same
information that is used by the FEM I is alllal',1 a quasi-optimal-complexity
algorithm, regardless of whether ( 1.1 ) holds.

2. THE ELLIPTIC BOU:--;DARY- VALUE PROBE"I

In this section. we define (homogeneous) ellipticity. in the sense of
Petrovsky. We quote "shift theorems," which allow a priori estimation of
derivatives of the solution in terms of the derivatives of the data. We usc
standard notations for ([R1v-valued) Sobolev spaces. inner product. etc..
found in [7J (but extended to include functions whose values are in [R1\).
Fractional- and negative-order SoboIev spaces are defined via Hilbert space
interpolation and duality. respectively (sec [4. 6. II J for details). Since for
simplicity we only deal with real systems. we use the notation of [I J when
describing ellipticity. even though the shift theorems arc taken from [12].
For purposes of exposition. we assume that the coefficients of the system
and the boundary of the region over which the problem is to be solved
are C'.
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Let Q s:: [RN be a bounded ex region. Define the differential operator
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with aI denoting the partial derivative in the Ith direction, where (using the
standard multi-index notation found in, e.g., [7J) we set

here the coefficients a;~ E C f (.0) and t is a non-negative integer. Let

10(x () = " ai/(x) (I'
II '- L II -

ild ~ {

denote the principal part of Ii/' We assume that I is elliptic, i.e.,

L(x, 0 := det[/~~(x, OJ # 0 'r/x E .0, 'r/ non-zero ~ E [RN.

We now wish to specify a boundary operator. For x E oQ, let v, and T,

denote unit normalized tangent vectors to iJQ at x, and set

L, is a polynomial of degree Nt in the complex variable 1], which (by ellip­
ticity) has no real roots; since the coefficients of L, are real, there is a non­
negative integer m such that Nt = deg L, = 2m. Hence we may factor

where the zeros of L7 (respectively, of L, ) have positive (respectively,
negative) real part, and deg L ,+ = deg L, = m. Then we define a boundary
operator

h(x, 0)= [h,;C'-, (~)J\ , 11/.1 /v

by

h,;C'-, 0 = L h;~(x) ~II,
il,i C:.",

where 1'\ , ... ,1'" are positive integers and the coefficients h;~ are infinitely dif­
ferentiable.

Let the principal part h;~ of hi/be defined by

fJ..tO'4." 1-6
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Let Uk(x, 0 denote the cofactor of I;~C'\:, 0 in the matrix [/;),(x, 0]1
For x E 8Q and complex I), let

l !II, I / If ~

with

C,)X, I)) = I h;~(x, T, + I/I'J Ck(x, T, + 1/1',).
k 1

The boundary operator h is complementary to I if the row vectors of the
matrix C, considered as polynomials in the complex variable II, are
linearly independent relative to the modulus of L\+(I1).

We say that I and h are elliptic on Q if I is elliptic and h is complemen­
tary to I. For s ~ 0, let H'(el ) denote the completion (with respect to the
Sobolev norm '11 J of the set of infinitely differentiable functions u such
that hu = 0 on oQ. We then have thc following "shift theorem," taken from
[12 ]:

LEMMA 2.1. III and h are elliptic on Q. then tr)r an)' r ~ 0, there exists
(J ~ 1 such that

(J I lull,~!luli,+,~(Jl/ull, VUEH'·'(i'j.

In order to proceed, we must consider the formal adjoint I+ of I given by

I + (x, 0) = [I,) (x, D)]I SII\

with

I,rc'\:, D) uJ,) = I oll(a::(x) ul(x)).
!III 1

Integrating by parts, one may define an adjoint boundary operator h +

such that

(/u, v)o = (u, I + v )0 VUE H'(a), VI'E H'(l)'.

where for s ~ 0, H'(o) + denotes the Ii '11 ,·completion of the set of infinitely
differential functions l' such that h + l' = 0 on oQ.

In the remainder of this paper, we assume that I and h are elliptic on Q.
as well as 1+ and h+. (RoHberg and Sefte! [12] give a normality condition
on h such that ellipticity of I and h on Q implies that of I + and h +.)

We then have the following result from [12]:

LEMMA 2.2. Let r ~ O. There is a CO/lSlant (J ~ I such that the j()lIoli'ing
hold:
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(i) For anyfE H'(Q), there exists UE Hr+I(?:) such that
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\rith

Iu =f in Q, hu=O on ?:Q.

(ii) For any g E H'(Q). there exists l' E H' t I( a) + such that

1+1' = g in Q, h+ l' = 0 on i"Q,

\rith

We are now finally ready to state the problem to be studied In this
paper. Given I' ~ 0, define a solution operator

by letting u = Sl satisfy

lu=Iin Q, hu=O on ?:Q.

Using Lemma 2.2. we see that 51 is a bounded Injection with range
H't/(t)c.;H1(?:). By the Rellich-Kondrasov theorem [7, p. 114J, 51 is an
isomorphism or compact, according to whether I' = 0 or I' > O.

3. INFORMATION A;-.ID ALGORITHMS

In this section. we recall results from [13 J concerning optimal
algorithms and information, as applied to the problem of solving an elliptic
system.

Recall that we are trying to approximate Sl for arbitrary IE H'(Q),
where 51: Hr(Q) -. H1Un is the solution operator defined above and I' ~ O.
Most methods for solving this problem use a finite number of linear
functionals on I when approximating Sf: For instance, such methods may
evaluate f at a finite number of points in Q, or the inner product of/with a
finite number of predetermined functions. In fact, even when a closed form
expression for I is available, most methods do not explicitly use this
expression; they only use the values of a finite number of linear functionals
at f Hence, we assume that we only know the values of a finite number of
linear functionals for each problem element f That is, we are given inlor­
mation ,j.' of cardinality n = card(. V), which is a linear surjection

, j.: H'(Q) -. [R/.
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Such information ,lV' is then used by an algorithm <p, which is a mapping
<p: IR n

----> HI(a); the class of such algorithms using ,f is denoted cP(, f).
Note that we allow any mapping to be an algorithm.

Given information. V and an algorithm <p EcP(A'), the quality of the
approximations produced by <p is measured by its error

e(<p)=sup IIS/~(p(,If)lls'

/c"
where the set F of prohlem elements is taken to be the unit ball of Hr(Q)

F=BW(Q):= {fEW(Q):llfllr~1:

and 0 ~ s ~ t, (In what follows, BH will always denote the unit ball of a
Hilbert space H.)

We are interested in algorithms using given information whose error is
as small as possible. Let

e(, I)=inf{c(<p): (PEcP( I)]

denote the optimal error of algorithms using, j, An algorithm <p* E cP(, I )
is an optimal error algorithm using I' if

e(<p*) = e(, I),

Expressions for the optimal error and an optimal error algorithm are given
by the following result from [13, Chap. 4 J:

LEMMA 3.1. (i) The optimal error is git'en hr

e(, I) = sup( IIShl1 ,: hE Fn ker, I ].

(ii) Let

VfE W(Q),

where 1. 1 ,,,,, J. n : Hr(Q) ----> IR are linearly independent hounded linear

functionals. Let (fl ,... , .I;,} he a hasis for the orthogonal complement
(ker A')~ o/ker ,r in Hr(Q) such that !c,Ui ) = 6 il' Then the spline algorithm

n

<p'(.lf) = I l.iU) Sf;
i~ I

is an optimal error algorithm using ,j,

Note that although we allow any mapping to be an algorithm, a linear
optimal error algorithm always exists,



COMPLEXITY OF ELLIPTIC SYSTEMS 75

Now that we know how to find an optimal error algorithm for any infor­
mation, we now seek optimal information of given cardinality. Let

e(n) = inf{eC.Y·): card uV :( n }

denote the nth minimal error. Information .A·/~ of cardinality at most n is
said to be nth optimal information if

eCV/~) = e(n).

An algorithm ((J/~ using information of cardinality at most n for which

e(((J,n = e(n)

is said to be an nth minimal error algorithm.
We now determine nth minimal error, optimal information, and a

minimal error algorithm. Recall that for a balanced convex subset X of a
Hilbert space H, the (Kolmogorov) n-width of X in H is given by

dl/(X, H) = inf sup inf Ilx - hll H,

H n x E X Ii E 1//1

the infimum being over all subspaces HI/ of H whose dimension does not
exceed n. We then have the following result from [13, Chaps. 2 and 3]:

LEMMA 3.2. (i) The nth minimal error is given hy

e(n)=dl/(5F, H'(D)).

(ii) If'r + t = s (which can happen if and only if'r = 0 and s = t), then
there exists <:0> 0 such that

lim e(n)=c;o.

(iii) If'r+t>s, let E: Hl(o)-> H'(o) he the inclusion operator, so that
£5 is compact. Let {e j } 7~ 1 he an orthonormal hasis of' Hr(Q) consisting of'
eigenvectors of K = (£5)* (£5), with

with lim Aj = O.
j- x

Then

the information

VfE W(Q)
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is nth optimal information, and

1/

4J,;(,l",;f) = L U; C), SCI
, I

VfE H'(Q)

is an nth minimal error algorithm.

The first statement in this lemma gives the nth minimal error as a
Kolmogorov n-width. The second implies that there is no algorithm whose
error is less than 0() if r + t = s. The third tells us that if r + t > s, then
liml/~ f e(n)=O.

Although we have explicit formulas for optimal information and
algorithms, as well as minimal error algorithms, these may be difficult to
determine in practice, since they require knowledge of S at the eigenvectors
of K. For this reason, we will be willing to settle for quasi-optimality [14].
i.e., optimality to within a constant which is independent of the cardinality
of the information; quasi-minimal error algorithms are defined analogously.
As a benchmark for establishing quasi-optimality, we now establish an
estimate of e(n) using techniques of [16]. The result is phrased in terms of
Knuth's big-theta notation [10]:

THEOREM 3,1. e(n) = e(n

Proof: For () > 0, let

(r ~. f
'IV I as n->y",

Lemma 2.1 yields

Since for any () > 0,

d)X(O), H'(D)) = () d,,(X( 1), H'(c')),

the first statement in Lemma 3.2 yields that

Using [2, Theorem 2.5.1] and the results of [8], we have

dl/(BH'+I(c'), H'(ef))=e(dl/(BHMQj, L 2 (Q))/t-1 ')=e(n 1/+1 'IV),

completing the proof. I
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4. OPTIMALITY OF FINITE ELEMENTS FOR ELLIPTIC SYSTEMS
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In this section, we define the (least-squares) finite element information
(FEI) of degree k and the (least-squares) finite-element method (FEM)
using fEI. We show that the FEM is a quasi-minimal error algorithm iff
k? r + t - 1, while the FEI is always quasi-optimal information. We use
the notation and terminology of [4, 7, II].

Let k be a non-negative integer. Let .'1-" be a triangulation of Q and leti ,;
be an n-dimensional subspace of H 1

( D) consisting of functions which are
piecewise polynomial of degree k with respect to the triangulation .'?T". (Of
course, there is a problem in that such functions cannot in general satisfy
the boundary conditions; this may be handled by using curved elements
[8J or isoparametric elements [7J on the boundary, or by using the
techniques found in [5, 15].) We assume that the family {.'?T" },~~ 1 is quasi­
uniform [11, p. 272].

In what follows, we assume that

k? 2t -1 -.I'. (4.1 )

See [10, Remark 4.1] for further discussion.
We recall the definition of the least-squares finite element method [5J as

applied to systems [2, 3, 15]. LetjE W(Q). For each positive integer n, we
seek an approximation UI/ E i ,; to u such that

III-lul/llo = min{ III-lvl/llo: 1'1/ E i ,;},

i.e., u" E'f,; satisfies

(lUI/' /t,,,)o= U: Iv,,)o Vv" E 'III'

Letting {WI , ... , W n} denote a basis for'f,~, define the (least-squares) finite
element information (FEI) .t~ by

VIE W(Q).

Then the (least-squares) finite element method (FEM) CfJnE<P(A;,) is given
by

CfJ,,(.I,J) = UI/'

Since the basis functions arc linearly independent and I is injective, it is
easy to see that CfJn is a well-defined linear algorithm using vte;,.

We now compute the error of the FEM.

THEOREM 4.1. Let

Il=min(k+ I-t, r).
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Then

as n ->x,

and so {CfJn} ,~~ I is a sequence o{ quasi-minimal error algorithms ill

k?-r+t-1. (4.2)

Proof We first show the lower bound for the error. If (4.2) holds, then
J1 = r, and so Theorem 3.1 yields

e( CfJn) ?- e(n) = ern II' I 1" \) as n ->x.

We now suppose (4.2) does not hold, so that J1 = k + 1 -- I. Using an
N-dimensional version of the proof of [16, Theorem 5.2 J there exists a
non-zero function u* E H' + I( D), a positive constant C and a positive
integer no, such that

inf Ilu* - rnt?- Cn
1'/1 Eo: 'f II

(JI ( .\

Since u* is non-zero, lu* is also non-zero. Let /* = lu*/ll/u*II,. Then
11/*11,= 1, so that /*EF. Since CfJn is linear with range i,;, the previous
estimate yields that

I'I,"SI}I -+ r

1
e(CfJn)?- IIS{* - CfJn(' ~,J* 1Ii, =~ Ilu* - CfJIJ \n I1l * )11,

I . C
?---*- mf u*-.rnll'?-11111*11,.nIl/u II, !"et"

completing the proof of the lower bound.
We now establish the upper bound. Let / E F. By (4.1 ) and (4.2), there

exists C> 0, independent off such that (setting u = Sf)

Ifn?- 1.

(See [15, Chap. 8J for the case t = I. and the references cited therein for
the case of arbitrary I.) Hence Lemma 2.2 yields

IIS{-CfJn(A,J)II,=llu-unt~Cn lIi'l '1/\llut'I~C(m [I'tl 'I/\I!/II,.

Since / E F is arbitrary, we have

e(CfJn) ~ CCJn (/1 t r I)'V,

completing the proof of the first part of the theorem.
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The remainder of the theorem now follows from the first part and from
Theorem 3.1. I

Hence the FEM is (roughly) a minimal error algorithm iff (4.2) holds.
Suppose (4.2) is violated. We show that the non-optimality of the FEM is
due to the fact that it uses the FEI inefficiently, rather than being inherent
in the FEI itself.

We first establish two intermediate results.

LEMMA 4.1. There exists a? I such that

Prout: If r = 0, this follows from Lemma 2.1. Once the result is shown
for r? t, it then holds for 0 < r < t by Hilbert space interpolation [6] of the
results for the cases r = 0 and r = t. So, we assume r? t without loss of
generality. Let WE HI(a). For any VE cg(Q), we may use Lemma 2.1 (with
r replaced by the non-negative real number r - t) to see that

Hence

11111'

as required. I

{
I(h\', r)ol, }

r=sup . :rEC(r(Q),I'#O ::::; a 11\\'11, "
111'11,

LEMMA 4.2. For g E C(~(Q), let v E ex (Q) he the solution of

(4.3)

Then there is a constant a? I, independent of g and H', such that

Proof: By (ii) of Lemma 2.2 (with r=O), we find

111'111::::; a Ilglla·

We next claim that

indeed, (i) of Lemma 2.2 yields

a 1 111'11 oilSI' !It::::; Ilvll~= IUSI', 11 )01 = I(Sv, g)ol::::; IISvl!rllgl1 "

(4.4 )

(4.5)
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which implies (4.5). The result now follows by Hilbert space interpolation
of (4.4) and (4.5). I

We now show that FEI is quasi-optimal, regardless of whether (4.2)
holds. Let ({i,', denote the spline algorithm using the FEI .f 1/ (see
Lemma 3.1).

Prool The first eq uaity follows from Lemma 3.1. We now establish the
second. For the lower bound. note that card .I,~ = 11, and so

c(.ll/)?e(n)=f)(11 (If' '1\) as 11 -+ f.

We now estabish thc upper bound. Let:: E F n ker . I", so that

'111'1/ E f 1/

and

Let gEe,; (f!) be non-zero, and choose I' Ee' (f!) satisfying (4.3). Then for
any 1'1/ E f 1/' we have

1(5::. g)ol = I(S::, /I I')1l1 = 1(::. 1')lli = I(::./(SI'- 1'1/))01

by Lemma 4.1. Since (4.1 ) holds, standard approximation-theoretic results
[4, 7] imply that there exists a positive constant C (independent of ::, g, 1',

and 11) and 1'1/ E f;, such that

But (i) of Lemma 2.2 and Lemma 4.2 imply that

Combining the three previous inequalities, we see that there is (another)
positive constant C (independent of ::, g, and 11) such that

Since g is an arbitrary element of ('I; . we have

15 I
I SI(S;:-,g)ol ("('2) -I- O}-'"('

1 :: I, = sup l II gil , : g Eo" ,g -r- "" fl
1,- t! \
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Taking the supremum over all ::: EO F (l ker ,I,;, we have
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(r + { <,1:/\1

completing the proof of the theorem. I

5. COMPLEXITY ANALYSIS

In this section, we discuss the complexity of finding I:-approximations to
the solution of the elliptic system, as well as the penalty for using the FEM
when k < t - I + r.

Let I: > O. An algorithm (p EO cPr. I ') produces an I;-approximation if

The complexity, comp( cp), of an algorithm cp EO cP(, I') is defined via the
model of computation discussed in [13, Chap. 5]. (Informally, we assume
that any linear functional can be evaluated with finite cost c l' and that the
cost of an arithmetic operation is unity.) It then turns out that if , I ' has
cardinality n, then

comp( cp) ?' nc 1 + n ~ I

while if cp is linear, then

(5.1 )

comp((p)~ncl +2n-l; (5.2)

see [13, Chap. 5, Section 2] for details. We then define, for I: > O. the
c:-complexity of the prohlem to be

COMP(I:) = inf( comp(cp): e( cp) ~ I:}.

If cp* is an algorithm for which

and comp(cp*) = COMP(E),

then (p* is said to be an optimal complexity algorithm for E-approximation
of the problem.

Remark 5. I. Note the distinction between algorithmic complexity,
which is the cost of using a particular algorithm to solve the problem to
within a tolerance of £, and prohlem complexity, which is the inherent cost
of solving the problem to within 1:. I

Remark 5.2. Not surprisingly, it is difficult to determine optimal com­
plexity algorithms. We will generally be willing to settle for optimality to
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within a constant factor, independent of c;. Hence, we say that a family
{<p ,* }I> () of algorithms has quasi-minimal complexity for the problem if

and

e(<p,*) ~;; for all sufficiently small I: > 0

comp(<pr.*) = e(COMP(c)) as D -> O. I

Recall that <Pn denotes the finite element method of degree k using the
finite element information .+,; based on the finite element subspace 'I',;, and
that <P;, denotes the spline algorithm using this information. We let

FEM(c;) := inf{ comp(<pn): e(<PII) ~ I; j

denote the algorithmic complexity of the FEM, and let

SPLINE(;;) := in£{ comp(<p;,): e(<p;,) ~ I;:
denote the algorithmic complexity of the spline algorithm using the FEI.
Using the results of Section 4, (5.1). and (5.2), we have

THEOREM 5.1. The prohlem complexit\' is

as I; -> O.

The algorithmic complexity of the spline algorithm is

SPLINE(<:) = e(l; \(, t, SI) as I; -> O.

The algorithmic complexity oj the finite element method is

as /; -> O.

where f1 = min(k + I - t, r).

Hence, we may draw the following conclusions:

THEOREM 5.2. (i) The spline algorithm using the FEI is quasi-optimal.

(ii) The FEM is quasi-optimal ill k??- t + I - r.

(iii) Let

FEM(c)
pen(D) = COMP(c)

denote the penalty for using the FEM instead of a quasi-optimal algorithm
using the same inl'ormation. 11' k < t - I + r, then

as ;; -> 0,
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and so

, I
),=----

k+l-s r+t-s

r - /1
-,-------- > 0,
(k+ I-s)(r+ t-S)

lim pen(s) = x.
/;-0

Thus there is an infinite asymptotic penalty (as [, ---t 0) for using the FEM
when k < t - I + r, rater than the spline algorithm which uses the same
information as does the FEM.

Remark 5.3. One of the assumptions in the model of computation used
in [13] is that computation of any linear functional is allowed, and has
finite cost c I' This holds if pre-conditioning is allowed. That is, given an
algorithm, any computations which are independent of the problem
element .r may be done in advance, and their cost is not counted when
determining the complexity of that algorithm. In particular, this means that
when measuring the complexity of the FEM, we do not count the cost of
factoring the coefficient matrix which appears when the algorithm is
reduced to the solution of a linear system of equations. (This is because the
coefficient matrix is independent of the problem element f) In many
situations, this is not a realistic assumption. In such cases, the FEM is no
longer quasi-optimal from the viewpoint of minimizing complexity (even
when k ~ t - I + r). It is perhaps possible that multi-grid techniques may be
used to transform the FEM into a method which has quasi-optimal com­
plexity in situations where pre-conditioning is not allowed. However, no
matter what model of computation is used, the quasi-minimal error proper­
ties described in Section 4 still hold, since they are independent of any par­
ticular model of computation. I
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